Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

To contribute published user compound and/or population files, upload your files here: Upload Model Files

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

4

5

6

7

8

9

10

11

12

13

14

15

16

17

>

>|

Found 68 Matches

Fostamatinib_RES_V21R1_Simcyp_20230615

Prepared: June 2023 The RES-Fostamatinib-R406_V21 model has been developed primarily as inhibitor of intestinal BCRP using the New GI physiology in Simcyp V21 with altered GI tract population inputs that became default in V22. Fostamatinib rapidly cleaved (hydrolyzed) to R406 (active moiety) in the gut by alkaline phosphatases. Thus, the Fit-for-purpose file with an in vivo CL/F is modelling the metabolite and not the parent. The verification was performed for 100-150 mg SD and BID. The Rosuvastatin DDI uses 100 mg BID. Example workspaces for the metabolite PK and the DDI with Rosuvastatin are attached. The BCRP component of Rosuvastatin (V21 using the New GI physiology) was optimised using Eltrombopag and then verified with other BCRP-Inhibitors available on the members area or within the Simcyp Simulator, see attached ‘BCRP-Inhibitor V21’ document for details.

Sulfadoxine

Brand Name(s) include: Fansidar

Disease: Malaria

Drug Class: Sulfonamide

Date Updated: March 2021

The model at-a-glance

  Absorption Model

  • First-Order

  Volume of Distribution

  • Minimal PBPK (User input Vss)

  Route of Elimination

  • Renal clearance (90%); non-specific hepatic metabolism (10%)

  Perpetrator DDI

  • None

  Validation

  • Four clinical studies describing single and multiple dose exposure of sulfadoxine were used to verify the PBPK model. In comparison of predicted vs. observed AUC, 100% of the studies were within 2-fold and 75% were within 1.5-fold. 

  Limitations

  • In the absence of adequate data on the metabolism and excretion of sulfadoxine, it was assumed that 90% was cleared renally and 10% was metabolized by the liver.

  Updates in V19

  • Updated in vitro­ data
    • LogP: 4.22 -> 0.54

 

Lamivudine_V18R1_Simcyp_20200212
FO, mainly renally excreted. Has been used with HV, pregnancy population and elderly population.
Morphine&Morphine-3-Glucuronide_V18R1_UniversityOfNorthCarolina_20201005
The submitted workspace file is for Morphine and Morphine-3-glucuronide compound files, with a full PBPK distribution model, ADAM and permeability-limited liver. The model also includes enterohepatic recycling and cleavage of the glucuronide in the gut lumen. The Sim-Healthy Volunteers population library was modified with regards to the relative enzyme abundance of luminal deglucuronidation. The setting in the workspace reflects the trial design from Stuart-Harris et al., 2000. Stuart-Harris R, Joel SP, McDonald P, Currow D, Slevin ML. The pharmacokinetics of morphine and morphine glucuronide metabolites after subcutaneous bolus injection and subcutaneous infusion of morphine. Br J Clin Pharmacol 49 207-214. (2000)

|<

<

4

5

6

7

8

9

10

11

12

13

14

15

16

17

>

>|