Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

To contribute published user compound and/or population files, upload your files here: Upload Model Files

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|

Found 68 Matches

Brand Name(s) include: Coartem

Disease: Malaria

Drug Class: Antimalarials

Date Updated: June 2021

The model at-a-glance

  Absorption Model

First-Order

  Volume of Distribution

  • Full PBPK (Method 2)

Note: A Kp scalar (0.5) was used in the model along with optimized partitioning into adipose tissue (Kp,adipose = 0.5) to recover the clinical observed data. 

  Route of Elimination

  • CYP2B6 and CYP3A4 (non-linear kinetics); incorporates autoinduction of CYP2B6

  Perpetrator DDI

  • Induction of CYP2B6

  Validation

  • Two clinical studies describing single dose exposure and two describing multiple dose exposure of artemether were used to verify the PBPK model.  The single dose exposures were within 1.5-fold of observed for both studies. The multiple dose exposures were slightly over-predicted at 2.02 and 2.63-fold for the two studies.  Clinical DDI studies with ketoconazole, rifampicin and efavirenz where artemether was the victim of CYP3A4 (and CYP2B6 for efavirenz)-mediated DDIs were accurately recovered (within 1.25-fold) using the PBPK model.  A clinical DDI study with efavirenz, where artemether was the perpetrator of a CYP2B6-mediated DDI was accurately recovered (within 1.25-fold) using the PBPK model. 

  Limitations

  • The tendency towards over-prediction of artemether exposure upon multiple dosing could indicate a greater extent of induction is required. However, any increase in induction potency resulted in under-prediction of single dose exposure, which is of greater importance for the therapeutic effect of artemether.

  Updates in V19

  • Updated in vitro­ data
    • fu: 0.083 -> 0.038
    • B:P: 1.7 -> 1.1
  • Optimized ka and tlag
  • Converted from minimal PBPK model to full PBPK model
    • Optimized CYP2B6 IndC50

 

this is a test

Sitagliptin_V15R1_USFDA_20170810
http://onlinelibrary.wiley.com/doi/10.1002/cpt.750/full Sitagliptin compound file in healthy volunteers. Evaluation of the effect of renal impairment on the PK of OAT substrates. NOTE: in the model Ka is 0.29, Peff is 0.18. Different from Table 1.
Rivaroxaban_V17R1_NationalUniversityofSingapore_20200923
https://dmd.aspetjournals.org/content/47/11/1291/tab-article-info This workspace was developed to recapitulate the magnitude of drug-drug interaction reported between Rivaroxaban and Verapamil as reported by Greenblatt et al. (https://pubmed.ncbi.nlm.nih.gov/29194698/) Note 1: In Table 1 of the publication the Caco-2 Papp (pH 7.4:7.4) was reported as 8 x 10-6 cm/s; however, the Rivaroxaban file in the workspace is using a Caco-2 Papp (pH 7.4:7.4) of 21.8 x 10-6 cm/s. This Papp is in line with the reported scalar in the EXCEL outputs and the Table 1. The obtained Rivaroxaban plasma concentration time profile is in line with the reported Figure 2C in the publication. Note 2: In Table 1 of the publication, input data for Mech KiM are stated; however, the Rivaroxaban file in the workspace is using a User Input for the renal clearance of 3.1 L/h; while the input data for Mech KiM are included in the compound file, they are not activated within the workspace, which is mimicking a DDI with Verapamil and Norverapamil. Note 3: Bile:micelle parameters were changed from 3.4 to 3.5.

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|