Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

To contribute published user compound and/or population files, upload your files here: Upload Model Files

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|

Found 87 Matches

Entecavir_V15R1_USFDA_20170810
Entecavir compound file in healthy volunteers. Evaluation of the effect of renal impairment on PK of OAT substrates. NOTE: file has predicted Vss of 0.98 L/kg. Table 1 value is 0.9 L/kg. http://onlinelibrary.wiley.com/doi/10.1002/cpt.750/full
Fenebrutinib_RES_V21R1_Simcyp_20230615

Prepared: June 2023 The RES-Fenebrutinib_V21 model has been developed primarily as an inhibitor of hepatic OATP1B1 and OATP1B3, and intestinal BCRP using the New GI physiology in Simcyp V21 with altered GI tract population inputs that became default in V22. The RES-Fenebrutinib is verified as solution formulation for 100mg SD, 200mg SD, and 200mg BID. The Rosuvastatin DDI is using a 200 mg BID dosing for Fenebrutinib. Example workspaces for the Fenebrutinib PK and the DDI with Rosuvastatin are attached. The BCRP component of Rosuvastatin (V21 using the New GI physiology) was optimised using Eltrombopag and then verified with other BCRP-Inhibitors available on the members area or within the Simcyp Simulator, see attached ‘BCRP-Inhibitor V21’ document for details.

Doxycycline

Brand Name(s) include: Adoxa, Doryx, Monodox, Oracea, Periostat, Vibramycin, Vibra-tabs

Disease: Malaria

Drug Class: Antibiotic

Date Updated: June 2022

The model at-a-glance

  Absorption Model

  • First-Order

  Volume of Distribution

  • Full PBPK (Method 2)
  • Note: A Kp scalar (0.3) was used in the model

  Route of Elimination

  • Biliary = 66%; Renal= 44%

  Perpetrator DDI

  • None

  Validation

  • Seven clinical studies describing single and multiple dose exposure of doxycycline were used to verify the PBPK model. The model predicted AUC values in 86% of studies within 2-fold (100% if one simulated/observed ratio is rounded down from 1.52 to 1.5), of which 57% were within 1.5-fold. 

  Limitations

  • Model is not verified at doses below 100 mg or about 200 mg (dose-linearity of doxycycline is uncertain)
  • Model assumes hyclate, monohydrate and hydrochloride formulations are bioequivalent
  • Model is not developed for the prediction of IV doxycycline
  • Model was developed and verified primarily in healthy volunteer studies (except Newton et al. 2005); appropriateness of extrapolation to acute malaria patients is unknown

  Updates in V19

  • Updated in vitro­ data
    • fu: 0.142 -> 0.23
    • B:P: 1.5 -> 0.78
  • Converted from minimal PBPK model to full PBPK model
  • Elimination changed from user input IV clearance to retrograde clearance with biliary clearance and additional hepatic clearance

 

Lumefantrine

Brand Name(s) include: Coartem (artemether, lumefantrine), Riamet (artemether, lumefantrine)

Disease: Malaria

Drug Class: Antimalarials

Related Files: Artemether – drug partner in fixed dose combinations

Date Updated: December 2022

The model at-a-glance

 Absorption Model

  • First-Order

 Volume of Distribution Details

  • Full PBPK (Method 2)

Note: Kp scalar and Kp adipose used

 Route of Elimination

CYP3A4 (40%); non-specific hepatic metabolism (60%)

 Perpetrator DDI

  • CYP2D6 Inhibitor

 Validation

  • Two clinical studies describing single dose exposure and two describing multiple dose exposure of lumefantrine were used to verify the PBPK model.
    • The single dose exposures were within 2-fold of observed for both studies.
    • The multiple dose exposures were within 1.25-fold of observed for both studies.
  • Clinical DDI studies with rifampicin and efavirenz in healthy volunteers where lumefantrine was the victim of CYP3A4-mediated DDIs were over-predicted (>2-fold) using the PBPK model.
  • An alternative clinical efavirenz DDI study in HIV patients and a clinical DDI with ritonavir in healthy volunteers were well predicted (within 1.25-fold of observed). As the effect of CYP3A4 inhibition was independently verified and there appeared to be variability in the extent of induction on lumefantrine PK, the fmCYP3A4 of 40% was considered verified.

 Limitations

  • Plasma concentrations of lumefantrine following a single dose are less accurately predicted than those following multiple dose administration. As the Day 7 plasma concentrations following repeat administration of lumefantrine, are more critical (linked to cure rates) than after the first dose, this was deemed acceptable.
  • The model can be used to prospectively predict CYP2D6-mediated DDIs but in the absence of verification of CYP2D6 inhibition, this should be accompanied by appropriate sensitivity analysis.​

 Updates in V19

  • Updates in vitro data based on new information
    • B:P ratio 0.6 -> 0.55
    • CYP2D6 Ki (µM) 2.2 -> 1.8

 

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|